Abstract
Nanofiltration methods were used and evaluated for strontium removal from wastewater. The phase inversion method was used to create a variety of polyethersulfone (PES)/TiO2 nanoribbons (TNRs)–multi-walled carbon nanotubes (MWCNTs) membranes with varied ratios of TNR-MWCNT nanocomposite. The hydrothermal technique was applied to synthesize the nanocomposite (TNRs-MWCNTs), which was then followed by chemical vapor deposition (CVD). The synthesized membranes were characterized by scanning electron microscopy (SEM), transmission electron microscopy, and FTIR. TNR macrovoids are employed as a support for the MWCNT growth catalyst, resulting in a TNR-MWCNT network composite. The hydrophilicity, mechanical properties, porosity, filtration efficiency of the strontium-containing samples, water flux, and fouling tendency were used to assess the performance of the synthesized membranes. The effect of feed water temperature on water flux was investigated as well as its effect on salt rejection. As the temperature increased from 30 to 90 °C, the salt rejection decreased from 96.6 to 82% for the optimized 0.7 PES/TNR-MWCNT membrane, whereas the water flux increased to ≈150 kg/m2. h. Double successive filtration was evaluated for its high efficiency of 1000 ppm strontium removal, which reached 82.4%.
Funder
Princess Nourah bint Abdulrahman University Researchers Supporting Project, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
Subject
Polymers and Plastics,General Chemistry
Reference48 articles.
1. Separation and economic recovery of strontium from Nanyishan oil-field water;Dong;Nat. Resour. Environ. Issues,2009
2. Public Health Statement, Strontium CAS#: 7440-24-6
3. Strontium in Drinking Water-Guideline Technical Document for Public Consultation
https://www.canada.ca/en/health-canada/services/environmental-workplace-health/water-quality/drinking-water/federal-provincial-territorial-committee-drinking-water-health-canada.html
4. Insights into the rejection of barium and strontium by nanofiltration membrane from experimental and modeling analysis
5. International Programme on Chemical Safety & Inter-Organization Programme for the Sound Management of Chemicals,2010
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献