Mechanical Properties and Dimensional Stability of Poplar Wood Modified by Pre-Compression and Post-Vacuum-Thermo Treatments

Author:

He Zaixin,Qi YanranORCID,Zhang Gang,Zhao Yueying,Dai Yong,Liu Baoxuan,Lian Chenglong,Dong Xiaoying,Li YongfengORCID

Abstract

Fast-growing poplar wood has the bottleneck problems of inferior mechanical strength and poor dimensional stability. In this study, the wood was modified by combined treatments of pre-compression and post-vacuum-thermo modification to improve its mechanical strength and dimensional stability, simultaneously; in addition, the variation law of mechanical properties of the wood with compression ratio as well as the improvement effect of dimensional stability of the treated wood were mainly studied. The results show that the optimal temperature and time of the vacuum-thermo modification were 190 °C and 10 h, respectively. Under these conditions, the structure of pre-compressed and post-vacuum-thermally modified wood (CT wood) is gradually densified with the increase in the compression ratio, which results in the continuous enhancement of mechanical properties. Meanwhile, the anti-swelling efficiency (ASE) of the CT wood after water absorption is correspondingly better than that of the compressed wood before thermal modification, indicating that the dimensional stability of compressed wood was improved by the thermal modification. When the compression ratio was 70%, the modulus of rupture (MOR) and impact toughness of CT wood was 176 MPa and 63 KJ/m2, which was 125% and 59% higher than that of untreated wood, respectively. The ASE was also 26% higher than that of the wood with sole compression. Therefore, this method improves the mechanical strength and dimensional stability of wood simultaneously, and it provides a scientific basis for optimization of the reinforcing modification process of fast-growing wood.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference58 articles.

1. Cost estimates for carbon sequestration from fast growing poplar plantations in Canada

2. Selected mechanical properties of fast-growing poplar hybrid clones;Hernández;Wood Fiber Sci.,1998

3. Some technological properties of laminated veneer lumber produced with fast-growing Poplar and Eucalyptus

4. Physical and mechanical properties of eight fast-growing plantation species in Costa Rica;Moya;J. Trop. For. Sci.,2010

5. Physical and Mechanical Properties of Methyl Methacrylate-Impregnated Wood from Three Fast-Growing Tropical Tree Species

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3