Glass Powder Additive on Recycled Polypropylene Filaments: A Sustainable Material in 3D Printing

Author:

Kristiawan Ruben Bayu,Rusdyanto Boby,Imaduddin FitrianORCID,Ariawan DodyORCID

Abstract

This study aimed to characterize the effect of a glass powder additive on recycled polypropylene (rPP) materials from food packaging to be used as filaments in material extrusion (MEX) 3D printing applications. The composite filaments studied were rPP filaments with glass powder (GP) additive in the 2.5%, 5%, and 10% fractions. As a baseline, the filaments made of pure virgin PP and rPP without additive were used. The filament that has been successfully made is then printed into a tensile test specimen and an impact test to observe its mechanical properties. Fourier-transform infrared spectroscopy (FTIR) characterization was also carried out to determine the effect of chemical bonding and thermal characterization using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results of FTIR characterization on the sample rPP + 10% do not show a typical peak shift of PP, but give rise to new peaks at wavenumbers of 1000 cm−1 (Si-O-Na), 890 cm−1 (Si-H) and 849 cm−1 (O-Si-O), which indicate the typical peaks of the glass constituent compounds. In the thermal characteristics, the addition of GP shows the improved stability of mass changes to heat and increases the melting temperature of rPP. The ultimate tensile strength and Young’s modulus for rPP-based specimens with 10% GP additive showed an increase of 38% and 42% compared to PP specimens. In addition to the improved mechanical strength, the addition of GP also reduces the bending deformation, which can be well controlled, and reduces curvature, which is a problem in semicrystalline polymer-based filaments.

Funder

Sebelas Maret University

PT Indofood Sukses Makmur Tbk.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3