Development of a Multi-Criteria Design Optimization Methodology for Automotive Plastics Parts

Author:

Romero Victor J.,Sanchez-Lite AlbertoORCID,Liraut Gerard

Abstract

The plastic industry is undergoing drastic changes, due to the customer sustainability perception of plastics, and the eruption of new processes (such 3D printing) and materials (such as renewably sourced resins). To enable a fast transition to high-quality, sustainable plastic applications, a specific methodology could be a key competitive advantage. This novel methodology is focused on improving the objectivity and efficiency of plastic production and the design review process. It is applicable to discrete optimization events in any product lifecycle milestone, from concept design to serial production stages. The methodology includes a natural way to capture plastic-related knowledge and trends, oriented towards building a dynamic “interaction matrix”, with a list of potential optimizations and their positive or negative impacts in a comprehensive set of multi-criteria evaluations. With an innovative approach, the matrix allows the possibility to incorporate a business strategy, which could be different at every lifecycle stage. The business strategy is translated from the common “verbal” definition into a quantitative set of “Target and Restrictions”, making it possible to detect and prioritize the best potential design optimization changes according to the strategy. This methodology helps to model and compare design alternatives, verify impacts in every evaluation criteria, and make robust and objective information-based decisions. The application of the methodology in real cases of plastic material design optimization in the automotive industry has provided remarkable results, accelerating the detection of improvement methods aligned with the strategy and maximizing the improvement in product competitiveness and sustainability. In comparison with the simultaneous application of existing mono-criteria optimization methodologies (such as “Design to Cost” or “Eco Design”) and subjective expert-based reviews, the novel methodology has a reduced workload and risks, confirming its potential for future application and further development in other polymer-based products, such as consumer goods or packaging.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3