Influence of Polymer Viscoelasticity on Microscopic Remaining Oil Production

Author:

Yan Yiqun,Wang Lihui,Sang Guoqiang,Han Xu

Abstract

To investigate the impact of polymer viscoelasticity on microscopic remaining oil production, this study used microscopic oil displacement visualisation technology, numerical simulations in PolyFlow software, and core seepage experiments to study the viscoelasticity of polymers and their elastic effects in porous media. We analysed the forces affecting the microscopic remaining oil in different directions, and the influence of polymer viscoelasticity on the displacement efficiency of microscopic remaining oil. The results demonstrated that the greater the viscosity of the polymer, the greater the deformation and the higher the elasticity proportion. In addition, during the creep recovery experiment at low speed, the polymer solution was mainly viscous, while at high speed it was mainly elastic. When the polymer viscosity reached 125 mPa·s, the core effective permeability reached 100 × 10−3 μm2, and the equivalent shear rate exceeded 1000 s−1, the polymer exhibited an elastic effect in the porous medium and the viscosity curve displayed an ‘upward’ phenomenon. Moreover, the difference in the normal deviatoric stress and horizontal stress acting on the microscopic remaining oil increased exponentially as the viscosity of the polymer increased. The greater the viscosity of the polymer, the greater the remaining oil deformation. During the microscopic visualisation flooding experiment, the viscosity of the polymer, the scope of the mainstream line, and the recovery factor all increased. The scope of spread in the shunt line area significantly increased, but the recovery factor was significantly lower than that in the mainstream line. The amount of remaining oil in the unaffected microscopic area also decreased.

Funder

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3