Abstract
Explosive detection has become an increased priority in recent years for homeland security and counter-terrorism applications. Although drones may not be able to pinpoint the exact location of the landmines and explosives, the identification of the explosive vapor present in the surrounding air provides significant information and comfort to the personnel and explosives removal equipment operators. Several optical methods, such as the luminescence quenching of fluorescent polymers, have been used for explosive detection. In order to utilize sensing technique via unmanned vehicles or drones, it is very important to study how the air flow affects the luminescence quenching. We investigated the effects of air flow on the quenching efficiency of Poly(2,5-di(2′-ethylhexyl)-1,4-ethynylene) (PEE) by TNT molecules. We treated the TNT molecules incorporated into the polymer film as non-radiative recombination centers, and found that the time derivative of the non-radiative recombination rates was greater with faster air flows. Our investigations show that relatively high air flow into an optical sensing part is crucial to achieving fast PL quenching. We also found that a “continuous light excitation” condition during the exposure of TNT vapor greatly influences the PL quenching.
Subject
Polymers and Plastics,General Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献