Cyclic Compression Testing of Three Elastomer Types—A Thermoplastic Vulcanizate Elastomer, a Liquid Silicone Rubber and Two Ethylene-Propylene-Diene Rubbers

Author:

Persson Anna-Maria Märta RuthORCID,Andreassen ErikORCID

Abstract

Thermoplastic elastomer vulcanizate (TPV) and liquid silicone rubber (LSR) are replacement candidates for ethylene-propylene-diene rubbers (EPDM), as they offer the possibility for two-component injection moulding. In this study, these material types were compared side by side in cyclic compression tests. The materials were also characterized to provide details on the formulations. Compared to the rubbers, the TPV had higher compression set (after a given cycle) and hysteresis loss, and a stronger Mullins effect. This is due to the thermoplastic matrix in the TPV. The LSR had lower compression set (after a given cycle) than the EPDM, but stronger Mullins effect and higher relative hysteresis loss. These differences between the LSR and the EPDM are likely due to differences in polymer network structure and type of filler. Methods for quantifying the Mullins effect are proposed, and correlations between a Mullins index and parameters such as compression set are discussed. The EPDMs showed a distinct trend in compression set, relative hysteresis loss and relaxed stress fraction vs. strain amplitude; these entities were almost independent of strain amplitude in the range 15–35%, while they increased in this range for the TPV and the LSR. The difference between the compression set values of the LSR and the EPDM decreased with increasing strain amplitude and increasing strain recovery time.

Funder

The Research Council of Norway

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference39 articles.

1. Special injection moulding processes;Turng,2008

2. Adhesion between thermoplastic elastomers and polyamide‐12 with different glass fiber fractions in two‐component injection molding

3. Rubber Technology Compounding and Testing for Performance;Dick,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3