Author:
Xue Yang,Yang Wuxinchen,Yue Renliang,Chen Yunfa
Abstract
The decontamination of radioactive materials on the surfaces of nuclear facilities has generated large quantities of waste from the rapid development of the nuclear industry, posing a potential threat globally. Strippable coating has been employed for some time to remove radioactive contamination due to its high performance and removability, flexibility, and compatibility with various substrates. Herein, an aqueous strippable coating based on an adsorbent/polyvinyl alcohol (PVA) polymer was developed to remove radioactive uranium from stainless-steel surfaces that showed greater decontamination than that of DeconGel, with an efficiency of 87.2% for 5 g/L uranium and 95.5% for 22.5 g/L uranium, along with a high repeatability and better mechanical properties. Furthermore, the prepared coating was versatile and could be applied to a range of substrate surfaces (lacquered, aluminum, glass, plastic, and ceramic), with outstanding performance ranging from 79.2 to 95.4% for 1 g/L uranium. The prepared coating could also be applied through brushing or spraying to horizontal or vertical substrates. The exceptional performance could be due to the synergistic effect of the introduction of ethylene diamine tetra-acetic acid disodium salt (EDTA-2Na) as a chelating agent and the nano-adsorbent CaCO3/TiO2.
Subject
Polymers and Plastics,General Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献