Using a Fiber Bragg Grating Sensor to Measure Residual Strain in the Vacuum-Assisted Resin Transfer Molding Process

Author:

Luo Guang-MinORCID,Liou Guang-Yen,Xiao Hong-Zhe

Abstract

Vinyl ester (VE) resin has strong environmental tolerance and is the matrix commonly used in the composite materials of fiber-reinforced plastics (FRP). VE resin is often combined with glass fiber in different maritime structures, such as wind turbine blades, spinner cases, and nacelle cases. However, VE resin exhibits exothermic reactions and shrinkage during curing, which often generates residual strain in large structures and those with a high stacking number. This study explored the exothermic reaction and shrinkage of VE resin and glass fiber during the vacuum-assisted resin transfer molding process, as measured using a fiber Bragg grating sensor. The experiment results verified the relationship between the stacking number and residual strain shrinkage. In addition, the symmetric laminate method was used to prevent the bending–twisting coupling effect and subsequent warping deformation of the FRP laminated plate during curing. The experiment results also verified that the bottom layers of the FRP laminated plates produced using VE resin were closer to the mold, and exhibited more shrinkage as the stacking number increased. In addition, this study discovered that during the experiment, the symmetry layer of the FRP laminated plate had a higher exothermic temperature than the bottom layer as a result of the symmetry layer’s ineffective heat dissipation. Therefore, the curing shrinkage of the symmetry layer resin was measured. The experiment results indicated that if the stacking number was between 10 and 30, the residual strain shrinkage of the symmetry layer was greater than that of the surface layer. However, because of the symmetric laminate, the residual strain of the symmetry layer did not increase when the temperature increased. Therefore, the greatest residual strain occurred at the surface of the bottom layer of the laminated plate with a stacking number of 40.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3