Abstract
Our goal was to prepare Span 60-based elastic nanovesicles (spanlastics (SPLs)) of tacrolimus (TCR) using the adapted ethanol injection method, characterize them, and evaluate their ability to improve the transdermal permeation of the active substance. The impact of two different concentrations of penetration enhancers, namely, propylene glycol and oleic acid, on the entrapment efficiency, vesicle size, and zeta potential was assessed. Moreover, in vitro release through a semipermeable membrane and ex vivo penetration through hairless rat skin were performed. Morphological examination and pharmacokinetics were performed for one selected formulation (F3OA1). TCR-loaded SPLs were effectively formulated with two different concentrations of permeation enhancers, and the effect of these enhancers on their physicochemical properties differed in accordance with the concentration and kind of enhancer used. The results of in vitro release displayed a considerable (p < 0.05) enhancement compared to the suspension of the pure drug, and there was a correlation between the in vitro and ex vivo results. The selected TCR-loaded nanovesicles incorporated into a gel base showed appreciable advantages over the oral drug suspension and the TCR-loaded gel. Additionally, the pharmacokinetic parameters were significantly (p < 0.05) improved based on our findings. Moreover, the AUC0–7 ng·h/mL form F3 OA1 was 3.36-fold higher than that after the administration of the TCR oral suspension.
Funder
Deanship of Scientific Research at King Saud University
Subject
Polymers and Plastics,General Chemistry
Reference40 articles.
1. Topical TCR: A new therapy for atopic dermatitis;Russell;Am. Fam. Physician,2002
2. TCR ointment (Protopic) for atopic dermatitis Skin;Pascual;Ther. Lett.,2004
3. Population pharmacokinetics and bioavailability of TCR in kidney transplant patients;Antignac;Br. J. Clin. Pharmacol.,2007
4. Dermal targeting of tacrolimus using colloidal carrier systems
5. Development and evaluation of a tacrolimus cream formulation using a binary solvent system
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献