Fabrication of a Nickel Ferrite/Nanocellulose-Based Nanocomposite as an Active Sensing Material for the Detection of Chlorine Gas

Author:

Janudin NurjahirahORCID,Kasim Noor Azilah Mohd,Feizal Knight Victor,Norrrahim Mohd Nor FaizORCID,Razak Mas Amira Idayu Abdul,Abdul Halim Norhana,Mohd Noor Siti Aminah,Ong Keat Khim,Yaacob Mohd HanifORCID,Ahmad Muhammad Zamharir,Yunus Wan Md Zin Wan

Abstract

Chlorine gas is extensively utilised in industries as both a disinfectant and for wastewater treatment. It has a pungent and irritating odour that is comparable with that of bleach and can cause serious health issues such as headaches and breathing difficulties. Hence, efficiently, and accurately monitoring chlorine gas is critical to ensure that no undesirable incidents occur. Due to its remarkable characteristics, numerous researchers have explored the potential of ferrite nanoparticles as a sensing material for chlorine gas detection. Among several ferrite nanoparticles, nickel ferrite (NiFe2O4) is extensively studied as an inverse spinel structured magnetic material that may be ideal for sensing applications. However, the magnetic characteristics of NiFe2O4 cause agglomeration, which necessitates the use of a substrate for stabilisation. Therefore, nanocellulose (NC), as a green and eco-friendly substrate, is ideal for stabilising bare nickel ferrite nanoparticles. In a novel experiment, nickel ferrite was loaded onto NC as a substrate using in situ deposition. The structure was confirmed by X-ray Diffraction (XRD) analysis, while elemental composition was verified by Energy dispersive X-ray (EDX) analysis. Gas sensing properties were determined by evaluating sensitivity as a function of various regulating factors, such as the amount of nickel ferrite, gas concentration, repeatability, and reusability. In the evaluation, 0.3 g nickel ferrite showed superior response and sensitivity than those of other samples. The achieved response time was around 40 s, while recovery time was about 50 s. This study demonstrates the potential of a nickel ferrite/nanocellulose-based nanocomposite to efficiently monitor chlorine gas.

Funder

Malaysian Ministry of Higher Education

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3