Design and Preparation of Biomass-Derived Activated Carbon Loaded TiO2 Photocatalyst for Photocatalytic Degradation of Reactive Red 120 and Ofloxacin

Author:

Alghamdi Yousef GamaanORCID,Krishnakumar BaluORCID,Malik Maqsood Ahmad,Alhayyani Sultan

Abstract

The design and development of novel photocatalysts for treating toxic substances such as industrial waste, dyes, pesticides, and pharmaceutical wastes remain a challenging task even today. To this end, a biowaste pistachio-shell-derived activated carbon (AC) loaded TiO2 (AC-TiO2) nanocomposite was fabricated and effectively utilized towards the photocatalytic degradation of toxic azo dye Reactive Red 120 (RR 120) and ofloxacin (OFL) under UV-A light. The synthesized materials were characterized for their structural and surface morphology features through various spectroscopic and microscopic techniques, including high-resolution transmission electron microscope (HR-TEM), field emission scanning electron microscope (FE-SEM) along with energy dispersive spectra (EDS), diffuse reflectance spectra (DRS), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, photoluminescence spectra (PL) and BET surface area measurements. AC-TiO2 shows enhanced photocatalytic activity compared to bare TiO2 due to the change in the bandgap energy and effective charge separation. The degradation rate of dyes was affected by the bandgap of the semiconductor, which was the result of the deposition weight percentage of AC onto the TiO2. The presence of AC influences the photocatalytic activity of AC-TiO2 composite towards RR 120 and OFL degradation. The presence of heteroatoms-enriched AC enhances the charge mobility and suppresses the electron-hole recombination in AC-TiO2 composite, which enhances the photocatalytic activity of the composite. The hybrid material AC-TiO2 composite displayed a higher photocatalytic activity against Reactive Red 120 and ofloxacin. The stability of the AC-TiO2 was tested against RR 120 dye degradation with multiple runs. GC-MS analyzed the degradation intermediates, and a suitable degradation pathway was also proposed. These results demonstrate that AC-TiO2 composite could be effectively used as an ecofriendly, cost-effective, stable, and highly efficient photocatalyst.

Funder

Ministry of Education and King Abdulaziz University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3