High Performance Polymer Solar Cells Using Grating Nanostructure and Plasmonic Nanoparticles

Author:

Elrashidi AliORCID,Elleithy KhaledORCID

Abstract

This work introduces a high-efficiency organic solar cell with grating nanostructure in both hole and electron transport layers and plasmonic gold nanoparticles (Au NPs) distributed on the zinc oxide (ZnO) layer. The periods of the grating structure in both hole and electro transport layers were optimized using Lumerical finite difference time domain (FDTD) solution software. The optimum AuNP radius distributed on the ZnO layer was also simulated and analyzed before studying the effect of changing the temperature on the solar cell performance, fill factor, and power conversion efficiency. In addition, optical and electrical models were used to calculate the short circuit current density, fill factor, and overall efficiency of the produced polymer solar cell nanostructure. The maximum obtained short circuit current density and efficiency of the solar cell were 18.11 mA/cm2 and 9.46%, respectively, which gives a high light absorption in the visible region. Furthermore, the effect of light polarization for incident light angles from θ = 0° to 70° with step angle 10° on the electrical and optical parameters were also studied. Finally, optical power, electric field, and magnetic field distribution inside the nanostructure are also illustrated.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3