Molecular Simulation Study on Mechanical Properties of Microcapsule-Based Self-Healing Cementitious Materials

Author:

Wang XianfengORCID,Xie Wei,Li Long-yuan,Zhu Jihua,Xing Feng

Abstract

Microcapsule-based self-healing concrete can effectively repair micro-cracks in concrete and improve the strength and durability of concrete structures. In this paper, in order to study the effect of epoxy resin on the cement matrix at a microscopic level, molecular dynamics were used to simulate the mechanical and interfacial properties of microcapsule-based self-healing concrete in which uniaxial tension was carried out along the z-axis. The radial distribution function, interface binding energy, and hydrogen bonding of the composite were investigated. The results show that the epoxy resin/C-S-H composite has the maximum stress strength when TEPA is used as the curing agent. Furthermore, the interface binding energy between epoxy resin and cement matrix increases with increasing strain before the stress reaches its peak value. The cured epoxy resin can enhance both the interfacial adhesion and the ductility of the composite, which can meet the needs of crack repair of microcapsule-based self-healing cementitious materials.

Funder

Key-Area Research and Development Program of Guangdong Provinc

National Natural Science Foundation of China

Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3