Hemicellulose and Nano/Microfibrils Improving the Pliability and Hydrophobic Properties of Cellulose Film by Interstitial Filling and Forming Micro/Nanostructure

Author:

Li Yan,Yao Mingzhu,Liang Chen,Zhao HuiORCID,Liu YangORCID,Zong Yifeng

Abstract

In this paper, nano/microfibrils were applied to enhance the mechanical and hydrophobic properties of the sugarcane bagasse fiber films. The successful preparation of nano/microfibrils was confirmed by scanning electron microscope (SEM), X-ray diffraction (XRD), fiber length analyzer (FLA), and ion chromatography (IC). The transparency, morphology, mechanical and hydrophobic properties of the cellulose films were evaluated. The results show that the nanoparticle was formed by the hemicellulose diffusing on the surface of the cellulose and agglomerating in the film-forming process at 40 °C. The elastic modulus of the cellulose film was as high as 4140.60 MPa, and the water contact angle was increased to 113°. The micro/nanostructures were formed due to hemicellulose adsorption on nano/microfilament surfaces. The hydrophobicity of the films was improved. The directional crystallization of nano/microfibrous molecules was found. Cellulose films with a high elastic modulus and high elasticity were obtained. It provides theoretical support for the preparation of high-performance cellulose film.

Funder

the National Natural Science Foundation of China

the Natural Science Foundation of Guangxi, China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3