Molecular Simulation on Permeation Behavior of CH4/CO2/H2S Mixture Gas in PVDF at Service Conditions

Author:

Li Houbu,Zhang XueminORCID,Chu Huifang,Qi Guoquan,Ding Han,Gao Xiong,Meng Jixing

Abstract

Reinforced thermoplastic composite pipes (RTPs) have been widely used for oil and gas gathering and transportation. Polyvinylidene fluoride (PVDF) has the greatest potential as a thermoplastic liner of RTPs due to its excellent thermal and mechanical properties. However, permeation of gases is inevitable in the thermoplastic liner, which may lead to blister failure of the liner and damage the safe operation of the RTPs. In order to clarify the permeation behavior and obtain the permeation mechanism of the mixture gas (CH4/CO2/H2S) in PVDF at the normal service conditions, molecular simulations were carried out by combining the Grand Canonical Monte Carlo (GCMC) method and the Molecular Dynamics (MD) method. The simulated results showed that the solubility coefficients of gases increased with the decrease in temperature and the increase in pressure. The adsorption isotherms of all gases were consistent with the Langmuir model. The order of the adsorption concentration for different gases was H2S > CO2> CH4. The isosteric heats of gases at all the actual service conditions were much less than 42 kJ/mol, which indicated that the adsorption for all the gases belonged to the physical adsorption. Both of the diffusion and permeation coefficients increased with the increase in temperature and pressure. The diffusion belonged to Einstein diffusion and the diffusion coefficients of each gas followed the order of CH4 > CO2 > H2S. During the permeation process, the adsorption of gas molecules in PVDF exhibited selective aggregation, and most of them were adsorbed in the low potential energy region of PVDF cell. The mixed-gas molecules vibrated within the hole of PVDF at relatively low temperature and pressure. As the temperature and pressure increase, the gas molecules jumped into the neighboring holes occasionally and then dwelled in the holes, moving around their equilibrium positions.

Funder

National Natural Science Foundation of China

the Fundamental Research Funds for the Central Universities, CHD

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3