Abstract
Elastomers with supreme mechanical adaptability where the increasing stress under continuous deformation is significantly inhibited within a large deformation zone, are highly desired in many areas, such as artificial muscles, flexible and wearable electronics, and soft artificial-intelligence robots. Such system comprises the advantages of recoverable elasticity and internal compensation to external mechanical work. To obtain elastomer with supreme mechanical adaptability, a novel liquid crystal-based organosilicon elastomer (LCMQ) is developed in this work, which takes the advantages of reversible strain-induced phase transition of liquid crystal units in polymer matrix and the recoverable nano-sized fillers. The former is responsible for the inhibition of stress increasing during deformation, where the external work is mostly compensated by internal phase transition, and the latter provides tunable and sufficient high tensile strength. Such LCMQs were synthesized with 4-methoxyphenyl 4-(but-3-en-1-yloxy)benzoate (MBB) grafted thiol silicone oil (crosslinker-g-MBB) as crosslinking agent, vinyl terminated polydimethylsiloxane as base adhesive, and fumed silica as reinforcing filler by two-step thiol-ene “click” reaction. The obtained tensile strength and the elongation at break are better than previously reported values. Moreover, the resulting liquid crystal elastomers exhibit different mechanical behavior from conventional silicone rubbers. When the liquid crystal content increases from 1% (w/w) to 4% (w/w), the stress plateau for mechanical adaptability becomes clearer. Moreover, the liquid crystal elastomer has no obvious deformation from 25 °C to 120 °C and is expected to be used in industrial applications. It also provides a new template for the modification of organosilicon elastomers.
Funder
National Natural Science Foundation of China
Subject
Polymers and Plastics,General Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献