A Heating-Assisted Direct Ink Writing Method for Preparation of PDMS Cellular Structure with High Manufacturing Fidelity

Author:

Xu Kang,Li Dongya,Shang Erwei,Liu YuORCID

Abstract

In response to the fact that most of the current research on silicone 3D printing suffers from structure collapse and dimensional mismatch, this paper proposes a heating-assisted direct writing printing method for commercial silicone rubber materials for preparing silicone foam with enhanced fidelity. In the experimental processes, the effects of substrate temperature, printing pressure, and printing speed on the filament width were investigated using a controlled variable method. The results showed the following: (1) the diameter of silicone rubber filaments was positively correlated with the printing pressure and substrate temperature, but negatively correlated with the printing speed; (2) the filament collapse of the large filament spaced foams was significantly improved by the addition of the thermal field, which, in turn, improved the mechanical properties and manufacturing stability of the silicon foams. The heating-assisted direct writing process in this paper can facilitate the development of the field of microelectronics and the direct printing of biomaterials.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3