Green Corrosion Inhibition on Carbon-Fibre-Reinforced Aluminium Laminate in NaCl Using Aerva Lanata Flower Extract

Author:

Hynes Navasingh Rajesh JesudossORCID,Vignesh Nagarajan Jawahar,Barile ClaudiaORCID,Velu Pitchumani ShenbagaORCID,Baskaran ThangagiriORCID,Jappes Jebas Thangiah Winowlin,Al-Khashman Omar AliORCID,Brykov MichailORCID,Ene AntoanetaORCID

Abstract

Aluminium-based fibre–metal laminates are lucrative candidates for aerospace manufacturers since they are lightweight and high-strength materials. The flower extract of aerva lanata was studied in order to prevent the effect of corrosion on the aluminium-based fibre–metal laminates (FMLs) in basic media. It is considered an eco-friendly corrosion inhibitor using natural sources. Its flower species belong to the Amaranthaceae family. The results of the Fourier-transform infrared spectroscopy (FTIR) show that this flower extract includes organic compounds such as aromatic links, heteroatoms, and oxygen, which can be used as an organic corrosion inhibitor in an acidic environment. The effectiveness of the aerva-lanata flower behaviour in acting as an inhibitor of the corrosion process of FMLs was studied in 3.5% NaCl solution. The inhibition efficiency was calculated within a range of concentration of the inhibitor at room temperature, using the weight-loss method, potentiodynamic polarization measurements and electrochemical-impedance spectroscopy (EIS). The results indicate a characterization of about 87.02% in the presence of 600 ppm of inhibitor. The Tafel curve in the polarization experiments shows an inhibition efficiency of 88%. The inhibition mechanism was the absorption on the FML surface, and its absorption was observed with the aid of the Langmuir adsorption isotherm. This complex protective film occupies a larger surface area on the surface of the FML. Hence, by restricting the surface of the metallic layer from the corrosive medium, the charge and ion switch at the FML surface is reduced, thereby increasing the corrosion resistance.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3