New Synthesis Routes toward Improvement of Natural Filler/Synthetic Polymer Interfacial Crosslinking

Author:

Nassar Mahmoud M. A.ORCID,Tarboush Belal J. Abu,Alzebdeh Khalid I.ORCID,Al-Hinai Nasr,Pervez Tasneem

Abstract

Among the critical issues dictating bio-composite performance is the interfacial bonding between the natural fibers and polymer matrix. In this regard, this article presents new synthesis routes comprising the treatment and functionalization of both date palm powder (DPP) filler and a polypropylene (PP) matrix to enhance filler–polymer adhesion in the newly developed bio-composites. Specifically, four bio-composite forms are considered: untreated DPP filled PP (DPP-UT/PP), treated DPP filled PP (DPP-T/PP), treated DPP filled functionalized PP using 2-isocyanatoethyl methacrylate (DPP-T/PP-g-IEM), and treated and functionalized DPP using 4-toluenesulfonyl chloride filled functionalized PP using 2-acrylamide ((DPP-T)-g-TsCl/PP-g-AcAm). The functional groups created on the surface of synthesized PP-g-IEM react with activated hydroxyl groups attached to the filler, resulting in chemical crosslinking between both components. Similarly, the reaction of TsCl with NH2 chemical groups residing on the mating surfaces of the filler and polymer generates an amide bond in the interface region. Fourier transform infrared spectroscopy (FTIR) is used to confirm the successful coupling between the filler and polypropylene matrix after applying the treatment and functionalization schemes. Owing to the introduced crosslinking, the DPP-T/PP-g-IEM bio-composite exhibits the best mechanical properties as compared to the neat polymer, unfunctionalized polymer-based bio-composite, and (DPP-T)-g-TsCl/PP-g-AcAm counterpart. The applied compatibilizers assist in reducing the water uptake of the manufactured bio-composites, increasing their durability.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3