The Impact of Selected Laser-Marking Parameters and Surface Conditions on White Polypropylene Moldings

Author:

Czyżewski PiotrORCID,Sykutera DariuszORCID,Rojewski MateuszORCID

Abstract

Laser marking of polymer materials is a technology that is increasingly used in industry. Polypropylene (PP) shows a low ability to absorb electromagnetic radiation in the near-infrared range (λ = 1064 nm). The paper presents the influence of the surface condition of white-colored polypropylene moldings on the efficiency of their marking with a laser beam. In addition, the operation of the commercial laser marking additive (LMA) Lifolas M 117009 UN, intended to support the process of laser marking of polyolefin surfaces, was verified. The study is an attempt to combine laser operating parameters, material, and geometric properties of PP moldings to obtain the expected quality of graphic symbols. The test samples were made by injection molding method with the use of a specially designed modular injection mold. The molding cavities were prepared with various methods of metal processing, thanks to which obtained moldings differed in surface condition. The marking effects were assessed based on colorimetric tests and digital image analysis. The 0.5 wt% LMA content resulted in obtaining a graphic sign with high contrast in comparison to the background. The gradual increase in the modifier content resulted in a further increase in contrast. These values depended on the degree of surface finish of the samples, and therefore on the roughness parameters. Samples with a rough surface finish showed higher contrast compared to surfaces with a high surface finish. It was also found that for the analyzed moldings, the laser-marking process should be performed with the use of a low head velocity (450–750 mm/s) and a high concentration of the laser beam (0.03–0.05 mm).

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3