Abstract
A major challenge in waste rubber (WR) industry is achieving a high sol fraction and high molecular weight of recycled rubber at the same time. Herein, the WR from the shoe industry was thermo-mechanically ground via the torque rheometer. The effect of grinding temperature and filling rate were systematically investigated. The particle size distribution, structure evolution, and morphology of the recycled rubber were explored by laser particle size analyzer, Fourier transform infrared spectroscopy (FTIR), sol fraction analysis, gel permeation chromatography (GPC), differential scanning calorimeter (DSC), and scanning electron microscope (SEM). The results indicate that the thermo-mechanical method could reduce the particle size of WR. Moreover, the particle size distribution of WR after being ground can be described by Rosin’s equation. The oxidation reaction occurs during thermal-mechanical grinding. With the increase of the grinding temperature and filling rate, the sol fraction of the recycled WR increases. It is also found that a high sol fraction (43.7%) and high molecular weight (35,284 g/mol) of reclaimed rubber could be achieved at 80 °C with a filling rate of 85%. Moreover, the obtained recycled rubber compound with SBR show a similar vulcanization characteristics to pure SBR. Our selective decomposition of waste rubber strategy opens up a new way for upgrading WR in shoe industry.
Subject
Polymers and Plastics,General Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献