Fabrication of Conductive, High Strength and Electromagnetic Interference (EMI) Shielded Green Composites Based on Waste Materials

Author:

Ali AzamORCID,Hussain FiazORCID,Tahir Muhammad Farrukh,Ali Majid,Zaman Khan MuhammadORCID,Tomková Blanka,Militky JiriORCID,Noman Muhammad TayyabORCID,Azeem MusaddaqORCID

Abstract

Conventional conductive homopolymers such as polypyrrole and poly-3,4-ethylenedioxythiophene (PEDOT) have poor mechanical properties, for the solution to this problem, we tried to construct hybrid composites with higher electrical properties coupled with high mechanical strength. For this purpose, Kevlar fibrous waste, conductive carbon particles, and epoxy were used to make the conductive composites. Kevlar waste was used to accomplish the need for economics and to enhance the mechanical properties. At first, Kevlar fibrous waste was converted into a nonwoven web and subjected to different pretreatments (chemical, plasma) to enhance the bonding between fiber-matrix interfaces. Similarly, conductive carbon particles were converted into nanofillers by the action of ball milling to make them homogeneous in size and structure. The size and morphological structures of ball-milled particles were analyzed by Malvern zetasizer and scanning electron microscopy. In the second phase of the study, the conductive paste was made by adding the different concentrations of ball-milled carbon particles into green epoxy. Subsequently, composite samples were fabricated via a combination of prepared conductive pastes and a pretreated Kevlar fibers web. The influence of different concentrations of carbon particles into green epoxy resin for electrical conductivity was studied. Additionally, the electrical conductivity and electromagnetic shielding ability of conductive composites were analyzed. The waveguide method at high frequency (i.e., at 2.45 GHz) was used to investigate the EMI shielding. Furthermore, the joule heating response was studied by measuring the change in temperature at the surface of the conductive composite samples, while applying a different range of voltages. The maximum temperature of 55 °C was observed when the applied voltage was 10 V. Moreover, to estimate the durability and activity in service the ageing performance (mechanical strength and moisture regain) of developed composite samples were also analyzed.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3