Abstract
A cephalexin (CEP) self-nanoemulsifying drug delivery system (SNEDDS) was developed in this study to improve the drug’s oral administration. The CEP-SNEDDS was made utilizing an aqueous titration method employing Lauroglycol 90, Poloxamer 188, and Transcutol-HP. Box-Behnken design (BBD) with three factors at three levels was used for optimization, and their impacts on globule size (nm), transmittance (percent), and emulsification time (s) were assessed. The optimized formulation (Opt-F3) was further tested for zeta potential, refractive index, percent transmittance, thermodynamic stability, in-vitro release, ex vivo permeability, antibacterial activity, and bioavailability. The chosen formulation (Opt-F3) had a globule size of 87.25 ± 3.16 nm, PDI of 0.25, zeta potential of −24.37 mV, self-emulsification duration of 52 ± 1.7 s, and percentage transmittance of 99.13 ± 1.5%, viscosity of 96.26 ± 2.72 cp, and refractive index of 1.29 ± 0.1. It showed a sustained release profile (94.28 ± 5.92 percent in 24 h). The Opt-F3 formulation had 3.95 times the permeability of CEP-dispersion. In comparison to CEP-dispersion, it also demonstrated greater antibacterial efficacy against tested Gram-positive and Gram-negative pathogens. The oral bioavailability of Opt-F3 is 3.48 times higher than that of CEP-dispersion, according to an in-vivo investigation. It has been determined that the prepared CEP-SNEDDS may be an advantageous carrier for CEP delivery.
Funder
Deanship of Scientific Research at Jouf University for funding this work
Subject
Polymers and Plastics,General Chemistry
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献