Abstract
The opportunity for the preparation of high-performance shape memory materials was brought about by the excellent mechanical properties of poly(lactic acid) (PLA). As the effect of crystallization on shape memory was still unclear, this brings constraints to the high-performance design of PLA. The PLA plates with different aggregation structure were prepared by three kinds of molding methods in this paper. The PLA plates were pre-stretched with a series of different strains above glass transition temperature (i.e., 70 °C). The recovery stress and ratio of the material were measured above stretching temperature (i.e., 80 °C). Prolonging of annealing time resulted in more perfect crystal structure and higher crystallinity. The crystal region acted as network nodes in shape memory PLA, and crystal region structure determined the shape memory performance. Based on the experimental results, the structural evolution of network nodes in shape memory PLA was established.
Subject
Polymers and Plastics,General Chemistry
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献