Improving BLE-Based Passive Human Sensing with Deep Learning

Author:

Iannizzotto Giancarlo1ORCID,Lo Bello Lucia2ORCID,Nucita Andrea1ORCID

Affiliation:

1. Department of Cognitive Sciences, Psychology, Education and Cultural Studies (COSPECS), University of Messina, 98122 Messina, Italy

2. Department of Electrical, Electronic and Computer Engineering (DIEEI), University of Catania, 95125 Catania, Italy

Abstract

Passive Human Sensing (PHS) is an approach to collecting data on human presence, motion or activities that does not require the sensed human to carry devices or participate actively in the sensing process. In the literature, PHS is generally performed by exploiting the Channel State Information variations of dedicated WiFi, affected by human bodies obstructing the WiFi signal propagation path. However, the adoption of WiFi for PHS has some drawbacks, related to power consumption, large-scale deployment costs and interference with other networks in nearby areas. Bluetooth technology and, in particular, its low-energy version Bluetooth Low Energy (BLE), represents a valid candidate solution to the drawbacks of WiFi, thanks to its Adaptive Frequency Hopping (AFH) mechanism. This work proposes the application of a Deep Convolutional Neural Network (DNN) to improve the analysis and classification of the BLE signal deformations for PHS using commercial standard BLE devices. The proposed approach was applied to reliably detect the presence of human occupants in a large and articulated room with only a few transmitters and receivers and in conditions where the occupants do not directly occlude the Line of Sight between transmitters and receivers. This paper shows that the proposed approach significantly outperforms the most accurate technique found in the literature when applied to the same experimental data.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of stroke patients’ bedroom-stay duration: machine-learning approach using wearable sensor data;Frontiers in Bioengineering and Biotechnology;2024-01-03

2. Exploring IoT Communication Technologies and Data-Driven Solutions;Learning Techniques for the Internet of Things;2023-11-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3