Aligned Matching: Improving Small Object Detection in SSD

Author:

Kang Seok-Hoon1ORCID,Park Joon-Sang1ORCID

Affiliation:

1. Department of Computer Engineering, Hongik University, Mapo-gu, Seoul 04066, Republic of Korea

Abstract

Although detecting small objects is critical in various applications, neural network models designed and trained for generic object detection struggle to do so with precision. For example, the popular Single Shot MultiBox Detector (SSD) tends to perform poorly for small objects, and balancing the performance of SSD across different sized objects remains challenging. In this study, we argue that the current IoU-based matching strategy used in SSD reduces the training efficiency for small objects due to improper matches between default boxes and ground truth objects. To address this issue and improve the performance of SSD in detecting small objects, we propose a new matching strategy called aligned matching that considers aspect ratios and center-point distance in addition to IoU. The results of experiments on the TT100K and Pascal VOC datasets show that SSD with aligned matching detected small objects significantly better without sacrificing performance on large objects or requiring extra parameters.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Separable CenterNet Detection Network Based on MobileNetV3—An Optimization Approach for Small-Object and Occlusion Issues;Mathematics;2024-08-15

2. Digital instrument reading recognition based on improved SSD algorithm;2024 IEEE 6th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC);2024-05-24

3. Improved Small Target Detection Algorithm Based on SSD;2024 5th International Conference on Computer Vision, Image and Deep Learning (CVIDL);2024-04-19

4. LTEA-YOLO: An Improved YOLOv5s Model for Small Object Detection;IEEE Access;2024

5. A Comparative Study on Plant Diseases Using Object Detection Models;Lecture Notes in Networks and Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3