ESCAPE: Evacuation Strategy through Clustering and Autonomous Operation in Public Safety Systems

Author:

Fragkos Georgios,Apostolopoulos Pavlos,Tsiropoulou Eirini

Abstract

Natural disasters and terrorist attacks pose a significant threat to human society, and have stressed an urgent need for the development of comprehensive and efficient evacuation strategies. In this paper, a novel evacuation-planning mechanism is introduced to support the distributed and autonomous evacuation process within the operation of a public safety system, where the evacuees exploit the capabilities of the proposed ESCAPE service, towards making the most beneficial actions for themselves. The ESCAPE service was developed based on the principles of reinforcement learning and game theory, and is executed at two decision-making layers. Initially, evacuees are modeled as stochastic learning automata that select an evacuation route that they want to go based on its physical characteristics and past decisions during the current evacuation. Consequently, a cluster of evacuees is created per evacuation route, and the evacuees decide if they will finally evacuate through the specific evacuation route at the current time slot or not. The evacuees’ competitive behavior is modeled as a non-co-operative minority game per each specific evacuation route. A distributed and low-complexity evacuation-planning algorithm (i.e., ESCAPE) is introduced to implement both the aforementioned evacuee decision-making layers. Finally, the proposed framework is evaluated through modeling and simulation under several scenarios, and its superiority and benefits are revealed and demonstrated.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3