Investigation of the Relationship between Compressive Strength and Hydrate Formation Behavior of Low-Temperature Cured Cement upon Addition of a Nitrite-Based Accelerator

Author:

Kim Jihoon,Honda Daiki,Choi HeesupORCID,Hama YukioORCID

Abstract

When concrete is used for construction in cold-temperature regions, cold-resistant accelerators based on calcium nitrite (Ca(NO2)2) and calcium nitrate (Ca(NO3)2) are added to prevent early freezing damage. Although cold-resistant accelerators increase the early compressive strength and prevent early freezing damage by promoting cement hydration, the strength enhancement effect owing to the formation of such hydrates has not been evaluated quantitatively thus far. This study covers various types of analysis to understand the relationship between cement hydrate formation behavior and strength development upon the addition of varying amounts of nitrite-based accelerator. We find that the early compressive strength is enhanced by the addition of nitrite-based accelerator via the promotion of the relative production of monosulfate and C-S-H in the early age. However, the development of compressive strength decreases with an increase in the curing age. Furthermore, we find that the promotion of hydration reactions at an early age with the addition of nitrite-based accelerator can affect the formation ratio of each hydrate at a late age. We believe our findings can significantly contribute to developments in concrete application and allied fields.

Publisher

MDPI AG

Subject

General Materials Science

Reference25 articles.

1. Fresh properties and early strength development of concrete using calcium nitrite and water-reducing agents;Akama;Proc. Jpn. Concr. Inst.,2012

2. Recommendation for Practice of Cold Weather Concreting,2010

3. Cold Weather Concreting with Hydronic Heaters;Grochoski;J. Am. Concr. Inst. ACI,2000

4. Cold-Weather Concreting, ACI 306R-88,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3