Abstract
Structural, electrical, magnetic, and specific heat measurements were carried out on ZnCr2Se4 single crystal and on nanocrystals obtained from the milling of this single crystal after 1, 3, and 5 h, whose crystallite sizes were 25.2, 2.5, and 2 nm, respectively. For this purpose, the high-energy ball-milling method was used. The above studies showed that all samples have a spinel structure, and are p-type semiconductors with less milling time and n-type with a higher one. In turn, the decrease in crystallite size caused a change in the magnetic order, from antiferromagnetic for bulk material and nanocrystals after 1 and 3 h of milling to spin-glass with the freezing temperature Tf = 20 K for the sample after 5 h of milling. The spin-glass behavior for this sample was derived from a broad peak of dc magnetic susceptibility, a splitting of the zero-field-cooling and field-cooling susceptibilities, and from the shift of Tf towards the higher frequency of the ac susceptibility curves. A spectacular result for this sample is also the lack of a peak on the specific heat curve, suggesting a disappearance of the structural transition that is observed for the bulk single crystal.
Subject
General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献