Nanopowders of Yttria-Stabilized Zirconia Doped with Rare Earth Elements as Adsorbents of Humic Acids

Author:

Suchanek MałgorzataORCID,Niewiara Ewa,Wilkosz KatarzynaORCID,Kubiak Władysław W.ORCID

Abstract

The aim of the investigations was to use, for the first time, zirconia nanopowders stabilized with yttria (YSZ) and rare element oxides (YSZ-Nd, YSZ-Gd) for removal of humic acids (HA) from aqueous solutions. Nanopowders were synthesized by means of hydrothermal crystallization and characterized using scanning electron microscope (SEM) with energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) methods and analysis of zeta potential. The adsorption processes analysis was carried out in a series of experiments depending on: initial concentration of humic acids, contact time, pH and mass of the used adsorbent. It was found, that the YSZ-Nd exhibits strong and much higher effectiveness of HA adsorption than YSZ and YSZ-Gd. The HA adsorption rate reached 96.8% for YSZ-Nd dosage of 100 mg, pH 4, and 15 min reaction time and for HA initial concentration equal to 25 mg/L. According to the Langmuir model simulation, the maximum adsorption capacity of HA on YSZ-Nd at pH 4 was calculated to be 2.95 mg/g. Changes in the FT-IR spectra of YSZ-Nd confirmed humic acids’ adsorption on the tested nanopowders, by the presence of additional bands representing carboxylic, alcohol, carbonyl and amino groups in humic acid structure. These functional groups could represent humic acids binding on the YSZ, YSZ-Nd or YSZ-Gd surfaces.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3