Abstract
The present study provides the mechanical properties of a new generation of refractory composites based on coarse-grained Al2O3 ceramic and the refractory metals Nb and Ta. The materials were manufactured by refractory castable technology and subsequently sintered at 1600 °C for 4 h. The mechanical properties and the damage behavior of the coarse-grained refractory composites were investigated at high temperatures between 1300 and 1500 °C. The compressive strength is given as a function of temperature for materials with two different volume fractions of the refractory metals Ta and Nb. It is demonstrated that these refractory composites do not fail in a completely brittle manner in the studied temperature range. The compressive strength for all materials significantly decreases with increasing temperature. Failure occurred due to the formation of cracks along the ceramic/metal interfaces of the coarse-grained Al2O3 particles. In microstructural observations of sintered specimens, the formation of tantalates, as well as niobium oxides, were observed. The lower compressive strength of coarse-grained Nb-Al2O3 refractory composites compared to Ta-Al2O3 is probably attributed to the formation of niobium oxides. The formation of tantalates, however, seems to have no detrimental effect on compressive strength.
Subject
General Materials Science
Reference49 articles.
1. Materials and Process Development of Advanced Refractories for Innovative Metal Processing
2. Heat-Resistant Materials;Davis,1997
3. Hochschmelzende Metalle: Pulvermetallurgische Werkstoffe für High-Tech-Anwendungen;Schider,1990
4. American Institute of Physics Handbook-4f. Thermal Expansion;Kirby,1972
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献