Literature Review of Hybrid CO2 Low Salinity Water-Alternating-Gas Injection and Investigation on Hysteresis Effect

Author:

Ma Shijia,James LesleyORCID

Abstract

Low salinity water injection (LSWI) is considered to be more cost-effective and has less environmental impacts over conventional chemical Enhanced Oil Recovery (EOR) methods. CO2 Water-Alternating-Gas (WAG) injection is also a leading EOR flooding process. The hybrid EOR method, CO2 low salinity (LS) WAG injection, which incorporates low salinity water into CO2 WAG injection, is potentially beneficial in terms of optimizing oil recovery and decreasing operational costs. Experimental and simulation studies reveal that CO2 LSWAG injection is influenced by CO2 solubility in brine, brine salinity and composition, rock composition, WAG parameters, and wettability. However, the mechanism for increased recovery using this hybrid method is still debatable and the conditions under which CO2 LSWAG injection is effective are still uncertain. Hence, a comprehensive review of the existing literature investigating LSWI and CO2 WAG injection, and laboratory and simulation studies of CO2 LSWAG injection is essential to understand current research progress, highlight knowledge gaps and identify future research directions. With the identified research gap, a core-scale simulation study on hysteresis effect in CO2 LSWAG injection is carried out. The results indicate different changing trend in oil recovery due to the impact of salinity on hysteresis and excluding of hysteresis effect in CO2 LSWAG injection simulation and optimization might lead to significant errors.

Funder

Chevron Canada

Hibernia Management and Development Company

Petroleum Research Newfoundland and Labrador

Natural Sciences and Engineering Research Council of Canada

the Province of Newfoundland and Labrador, and Mitacs

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3