Transition Metal Carbides Filler-Reinforced Composite Polymer Electrolyte for Solid-State Lithium-Sulfur Batteries at Room Temperature: Breakthrough

Author:

Al Alwan Basem,Wang Zhao,Fawaz Wissam,Ng K. Y. Simon

Abstract

All solid-state room-temperature lithium-sulfur (Li-S) batteries have gained increasing attention due to their ability to eliminate the polysulfides shuttle effects and the safety dangers associated with the liquid electrolytes. Herein, a novel composite solid-state electrolyte, which is nickel-tungsten carbides (NiWC) over mesoporous silica (SBA-15) filled polyethylene oxide (PEO), was developed and investigated for Li-S batteries. The filler minimizes the crystallinity of the PEO and increases the ionic conductivity of the electrolyte, resulting in lowering the AC impedance of electrolyte composite from 26,256 ohm to 2416 ohm and to 5734 ohm after adding the electrolyte material with Ni/W ratios of 1:1 and 9:1, respectively. A high initial specific capacity of 1305 mAh g−1 and a capacity retention of 66.7% after 8 cycles at C/10 was obtained at room temperature after adding NiWC/SBA-15 with a Ni/W ratio of 1:1. This novel composite solid-state electrolyte shows a remarkable long-term performance at high current rates (1, 2, 4, and 5C) and rate capabilities at 0.1, 0.2, 0.5, 1, 2, 4 and back to 0.1C. The battery was able to recover 77% of the initial specific capacity at 0.1C. The materials were characterized by XRD and SEM-EDX to study the crystallinity and elemental distributions, respectively.

Funder

Deanship of Scientific Research, King Khalid University, Abha, K.S.A.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3