Abstract
Straw bale building construction is attracting a revived public interest because of its potential for reduced carbon footprint, hygrothermal comfort, and energy savings at an affordable price. The present paper aims to summarize the current knowledge on straw bale construction, using available data from academic, industry, and public agencies sources. The main findings on straw fibers, bales, walls, and buildings are presented. The literature shows a wide variability of results, which reflects the diversity of straw material and of straw construction techniques. It is found that the effective thermal conductivity, density, specific heat, and elastic modulus of straw bales used in construction are in the range 0.033–0.19 W/(m·K), 80–150 kg/m3, 1075–2000 J/(kg·K), and 150–350 kPa respectively. Most straw-based multilayered walls comply with fire resistance regulations, and their U-value and sound reduction index range from 0.11 to 0.28 W/m2 K and 42 to 53 dB respectively, depending on the wall layout. When compared to standard buildings, straw bale buildings do provide yearly reductions in carbon emissions and energy consumption. The reductions often match those obtained after applying energy-saving technologies in standard buildings. The paper ends by discussing the future research needed to foster the dissemination of straw bale construction.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献