Author:
Wang Chendong,Zheng Lihong,Yuan Jianjuan,Huang Ke,Zhou Zhihua
Abstract
The accurate prediction of building heat demand plays the critical role in refined management of heating, which is the basis for on-demand heating operation. This paper proposed a prediction model framework for building heat demand based on reinforcement learning. The environment, reward function and agent of the model were established, and experiments were carried out to verify the effectiveness and advancement of the model. Through the building heat demand prediction, the model proposed in this study can dynamically control the indoor temperature within the acceptable interval (19–23 °C). Moreover, the experimental results showed that after the model reached the primary, intermediate and advanced targets in training, the proportion of time that the indoor temperature can be controlled within the target interval (20.5–21.5 °C) was over 35%, 55% and 70%, respectively. In addition to maintaining indoor temperature, the model proposed in this study also achieved on-demand heating operation. The model achieving the advanced target, which had the best indoor temperature control performance, only had a supply–demand error of 4.56%.
Funder
Tianjin Science and Technology Commission
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献