Investigation of Heat Transfer Fluids Using a Solar Concentrator for Medium Temperature Storage Receiver Systems and Applications

Author:

Kuldeep Pawan KumarORCID,Kumar SandeepORCID,Khan Mohammed SaquibORCID,Panchal HiteshORCID,Mawire AshmoreORCID,Mahavar SunitaORCID

Abstract

Solar concentrator collectors have the potential of meeting the medium- and high-temperature thermal energy demands of the world. A heat transfer fluid (HTF) is a vital component of a concentrating system to transfer and store thermal energy. This paper presents the design development of a solar paraboloidal dish concentrator (SPDC) and a study of selected HTFs using the storage receiver system of the concentrator. The locally designed SPDC (diameter 1.21 m and height 0.20 m) has features like light weight, effortless tracking, convenient transportation along with high optical and thermal performance. Three HTFs, silicone oil (SO), engine oil (EO) and ethylene glycol (EG), are selected based on their favorable properties for medium temperature (150–300 °C) applications. The characteristic parameters of HTFs, heating rate (Rh), instant thermal efficiency (ηith) and the overall heat loss coefficient (UL), are illustrated and determined experimentally. A new characteristic parameter, the normalized maximum fluid temperature (Tnf), is also introduced in the paper. In the heating test, the maximum attained temperatures by fluids, SO, EO and EG are found to be 240 °C, 180 °C and 160 °C, respectively. The thermal efficiencies of SO, EO and EG are determined to be 45, 36 and 31%, respectively. The heating rate of 6.56 °C/s is found to be the maximum for SO. Through the cooling test, the overall heat loss coefficient (UL) is computed to be 14 W/mK, which is the least among the three fluids compared. The high thermal performance, environmental safety and chemical stability of silicone oil make it suitable for use in concentrators for medium-temperature heat transfer and storage applications.

Funder

Department of Science and Technology

Science and Engineering Research Board

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference31 articles.

1. Duffie, J.A., and Beckman, W.A. Solar Energy Thermal Processes, 1974.

2. Liquid sodium versus Hitec as a heat transfer fluid in solar thermal central receiver systems;Boerema;Sol. Energy,2012

3. Fabrication and testing of a light weight solar concentrator;Mahavar;Int. J. Solid State Mater.,2016

4. Synthesis, Characterization and Testing of Black Metal Oxide Nanoparticles as Solar Concentrator Receiver Material;Mahavar;Mater. Today Proc.,2019

5. Review of heat transfer fluids in tube receivers used in concentrating solar thermal systems: Properties and heat transfer coefficients;Benoit;Renew. Sustain. Energy Rev.,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3