Gene Introgression among Closely Related Species in Sympatric Populations: A Case Study of Three Walnut (Juglans) Species

Author:

Dang ,Yue ,Zhang ,Zhao ,Zhao

Abstract

Gene introgression usually results from natural hybridization occurring among closely related species in sympatric populations. In this study, we discussed two rare and frequent gene flow phenomena between three species of Juglans plants and analyzed the possible causes for the difference. We collected 656 individuals from 40 populations of Persian walnut (Juglans regia L.), Chinese walnut (J. cathayensis Dode), and Iron walnut (J. sigillata Dode) that were genotyped at 17 expressed sequence tag simple sequence repeat (EST-SSR) loci to analyze the introgressions between J. regia and J. cathayensis, and J. regia and J. sigillata. Our study compared the spatial patterns of expected heterozygosity (HE), allelic richness (Rs), and private allele richness (PAR) so as to vividly infer the biogeographic history of related species of Juglans in the two regions. The results of the PCoA, UPGMA, and STRUCTURE analyses showed that all J. regia and J. sigillata populations clustered into one group, and the J. cathayensis populations clustered into the other group. The results of the historical gene flow analysis indicated that J. regia and J. sigillata have no genetic barriers, and the directional gene flow is mainly from J. regia to J. sigillata. For the three species of Juglans, all the above results indicated that gene flow was common among the same group of Juglans, and only rare and low-level gene flow appeared in distinct groups. Therefore, our study revealed multiple phenomena of gene flow and introgression among closely related species in sympatric populations, thereby providing a theoretical basis for the genetic evolution of the genus Juglans.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3