MSFANet: Multiscale Fusion Attention Network for Road Segmentation of Multispectral Remote Sensing Data

Author:

Tong Zhonggui1ORCID,Li Yuxia1,Zhang Jinglin1,He Lei2ORCID,Gong Yushu1

Affiliation:

1. School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

2. School of Software Engineering, Chengdu University of Information Technology, Chengdu 610225, China

Abstract

With the development of deep learning and remote sensing technologies in recent years, many semantic segmentation methods based on convolutional neural networks (CNNs) have been applied to road extraction. However, previous deep learning-based road extraction methods primarily used RGB imagery as an input and did not take advantage of the spectral information contained in hyperspectral imagery. These methods can produce discontinuous outputs caused by objects with similar spectral signatures to roads. In addition, the images obtained from different Earth remote sensing sensors may have different spatial resolutions, enhancing the difficulty of the joint analysis. This work proposes the Multiscale Fusion Attention Network (MSFANet) to overcome these problems. Compared to traditional road extraction frameworks, the proposed MSFANet fuses information from different spectra at multiple scales. In MSFANet, multispectral remote sensing data is used as an additional input to the network, in addition to RGB remote sensing data, to obtain richer spectral information. The Cross-source Feature Fusion Module (CFFM) is used to calibrate and fuse spectral features at different scales, reducing the impact of noise and redundant features from different inputs. The Multiscale Semantic Aggregation Decoder (MSAD) fuses multiscale features and global context information from the upsampling process layer by layer, reducing information loss during the multiscale feature fusion. The proposed MSFANet network was applied to the SpaceNet dataset and self-annotated images from Chongzhou, a representative city in China. Our MSFANet performs better over the baseline HRNet by a large margin of +6.38 IoU and +5.11 F1-score on the SpaceNet dataset, +3.61 IoU and +2.32 F1-score on the self-annotated dataset (Chongzhou dataset). Moreover, the effectiveness of MSFANet was also proven by comparative experiments with other studies.

Funder

Key Projects of Global Change and Response of Ministry of Science and Technology of China

Science and Technology Support Project of Sichuan Province

Fengyun Satellite Application Advance Plan

Natural Science Foundation of Sichuan Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3