Enhanced Estimate of Chromophoric Dissolved Organic Matter Using Machine Learning Algorithms from Landsat-8 OLI Data in the Pearl River Estuary

Author:

Huang Yihao12,Pan Jiayi123ORCID,Devlin Adam T.345

Affiliation:

1. School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China

2. Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Nanchang 330022, China

3. Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Shatin, Hong Kong, China

4. Cooperative Institute for Marine and Atmospheric Research, School of Ocean and Earth Science and Technology, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA

5. Department of Oceanography, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA

Abstract

Chromophoric Dissolved Organic Matter (CDOM) plays a critical role in the carbon and biogeochemical cycles within aquatic ecosystems. Satellite imagery can be employed to determine aquatic CDOM concentrations, highlighting the need for effective and precise algorithms for this task. In this study, a cruise survey dataset containing CDOM absorption coefficients and water-leaving radiances in the Pearl River estuary (PRE) was utilized to develop machine learning algorithms for CDOM retrieval from Landsat-8 Operational Land Imager (OLI) observations. Based on OLI wavelength bands, five bands and six band-ratios were chosen as input parameters for the machine learning models. Six machine learning models were trained to develop CDOM algorithms, including Support Vector Regression (SVR), Random Forest (RF), Extreme Gradient Boosting (XGBoost), Multi-Layer Perceptron (MLP), and Convolutional Neural Network (CNN). The results indicated that, among the six machine learning models, the XGBoost algorithm performed best, with the highest R2 value of 0.9 and the lowest CDOM root mean square error (RMSE) of 0.37 m−1, outperforming empirical algorithms. The XGBoost algorithm identified B4/B1 as the most critical input parameter, contributing 71%, followed by B3/B2 with a 16% contribution, where B1, B2, B3, and B4 are the wavelength bands of the OLI. These two band-ratios accounted for most of the contributions, suggesting their significant role in CDOM retrieval from Landsat OLI images. By employing the developed XGBoost algorithm, CDOM spatial patterns at six instances were derived from Landsat-8 OLI image reflectance, illustrating CDOM variations in the PRE influenced by various factors. Further analysis revealed that, in the PRE, tides and winds are the primary driving forces behind the spatial and temporal variability of CDOM. At present, the exploration of employing machine learning algorithms to infer CDOM concentrations in this region remains relatively limited; therefore, with a higher R2 value, the machine learning model we established unveils fresh and novel results.

Funder

National R&D Program of China

Jiangxi Normal University Start-up Fund

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3