Adaptive Local Cross-Channel Vector Pooling Attention Module for Semantic Segmentation of Remote Sensing Imagery

Author:

Wang Xiaofeng1,Kang Menglei1ORCID,Chen Yan2,Jiang Wenxiang2ORCID,Wang Mengyuan2,Weise Thomas2,Tan Ming2,Xu Lixiang1,Li Xinlu1ORCID,Zou Le1,Zhang Chen1

Affiliation:

1. Department of Big Data and Information Engineering, School of Artificial Intelligence and Big Data, Hefei University, Hefei 230601, China

2. Institute of Applied Optimization, School of Artificial Intelligence and Big Data, Hefei University, Hefei 230601, China

Abstract

Adding an attention module to the deep convolution semantic segmentation network has significantly enhanced the network performance. However, the existing channel attention module focusing on the channel dimension neglects the spatial relationship, causing location noise to transmit to the decoder. In addition, the spatial attention module exemplified by self-attention has a high training cost and challenges in execution efficiency, making it unsuitable to handle large-scale remote sensing data. We propose an efficient vector pooling attention (VPA) module for building the channel and spatial location relationship. The module can locate spatial information better by performing a unique vector average pooling in the vertical and horizontal dimensions of the feature maps. Furthermore, it can also learn the weights directly by using the adaptive local cross-channel interaction. Multiple weight learning ablation studies and comparison experiments with the classical attention modules were conducted by connecting the VPA module to a modified DeepLabV3 network using ResNet50 as the encoder. The results show that the mIoU of our network with the addition of an adaptive local cross-channel interaction VPA module increases by 3% compared to the standard network on the MO-CSSSD. The VPA-based semantic segmentation network can significantly improve precision efficiency compared with other conventional attention networks. Furthermore, the results on the WHU Building dataset present an improvement in IoU and F1-score by 1.69% and 0.97%, respectively. Our network raises the mIoU by 1.24% on the ISPRS Vaihingen dataset. The VPA module can also significantly improve the network’s performance on small target segmentation.

Funder

National Natural Science Foundation of China

Key Scientific Research Foundation of the Education Department of Province Anhui

University Natural Sciences Research Project of Province

Hefei University Talent Research Funding

Hefei University Scientific Research Development Funding

Program for Scientific Research Innovation Team in Colleges and Universities of Anhui Province

Hefei Specially Recruited Foreign Expert

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3