Multisensor Satellite Data and Field Studies for Unravelling the Structural Evolution and Gold Metallogeny of the Gerf Ophiolitic Nappe, Eastern Desert, Egypt

Author:

Abd El-Wahed Mohamed1ORCID,Kamh Samir1ORCID,Abu Anbar Mohamed1ORCID,Zoheir Basem23ORCID,Hamdy Mohamed1ORCID,Abdeldayem Abdelaziz1,Lebda El Metwally4,Attia Mohamed4ORCID

Affiliation:

1. Geology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt

2. Geology Department, Faculty of Science, Benha University, Benha 13518, Egypt

3. Institute of Geosciences, University of Kiel, Ludewig-Meyn Str. 10, 24118 Kiel, Germany

4. Geology Department, Faculty of Science, Kafr El Sheikh University, Kafr El Sheikh 33511, Egypt

Abstract

The gold mineralization located in the southern Eastern Desert of Egypt mostly occurs in characteristic geologic and structural settings. The gold-bearing quartz veins and the alteration zones are confined to the ductile shear zones between the highly deformed ophiolitic blocks, sheared metavolcanics, and gabbro-diorite rocks. The present study attempts to integrate multisensor remotely sensed data, structural analysis, and field investigation in unraveling the geologic and structural controls of gold mineralization in the Gabal Gerf area. Multispectral optical sensors of Landsat-8 OLI/TIRS (L8) and Sentinel-2B (S2B) were processed to map the lithologic rock units in the study area. Image processing algorithms including false color composite (FCC), band ratio (BR), principal component analysis (PCA), minimum noise fraction (MNF), and Maximum Likelihood Classifier (MLC) were effective in producing a comprehensive geologic map of the area. The mafic index (MI) = (B13-0.9147) × (B10-1.4366) of ASTER (A) thermal bands and a combined band ratio of S2B and ASTER of (S2B3+A9)/(S2B12+A8) were dramatically successful in discriminating the ophiolitic assemblage, that are considered the favorable lithology for the gold mineralization. Three alteration zones of argillic, phyllic and propylitic were spatially recognized using the mineral indices and constrained energy minimization (CEM) approach to ASTER data. The datasets of ALSO PALSAR and Sentinel-1B were subjected to PCA and filtering to extract the lineaments and their spatial densities in the area. Furthermore, the structural analysis revealed that the area has been subjected to three main phases of deformation; (i) NE-SW convergence and sinistral transpression (D2); (ii) ~E-W far field compressional regime (D3), and (iii) extensional tectonics and terrane exhumation (D4). The gold-bearing quartz veins in several occurrences are controlled by D2 and D3 shear zones that cut heterogeneously deformed serpentinites, sheared metavolcanic rocks and gabbro-diorite intrusions. The information extracted from remotely sensed data, structural interpretation and fieldwork were used to produce a gold mineralization potential zones map which was verified by reference and field observations. The present study demonstrates the remote sensing capabilities for the identification of alteration zones and structural controls of the gold mineralization in highly deformed ophiolitic regions.

Funder

Tanta University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3