Progressive Context-Aware Aggregation Network Combining Multi-Scale and Multi-Level Dense Reconstruction for Building Change Detection

Author:

Xu Chuan1ORCID,Ye Zhaoyi1ORCID,Mei Liye1,Yang Wei2ORCID,Hou Yingying1,Shen Sen3,Ouyang Wei2,Ye Zhiwei1

Affiliation:

1. School of Computer Science, Hubei University of Technology, Wuhan 430068, China

2. School of Information Science and Engineering, Wuchang Shouyi University, Wuhan 430064, China

3. School of Weapon Engineering, Naval Engineering University, Wuhan 430032, China

Abstract

Building change detection (BCD) using high-resolution remote sensing images aims to identify change areas during different time periods, which is a significant research focus in urbanization. Deep learning methods are capable of yielding impressive BCD results by correctly extracting change features. However, due to the heterogeneous appearance and large individual differences of buildings, mainstream methods cannot further extract and reconstruct hierarchical and rich feature information. To overcome this problem, we propose a progressive context-aware aggregation network combining multi-scale and multi-level dense reconstruction to identify detailed texture-rich building change information. We design the progressive context-aware aggregation module with a Siamese structure to capture both local and global features. Specifically, we first use deep convolution to obtain superficial local change information of buildings, and then utilize self-attention to further extract global features with high-level semantics based on the local features progressively, which ensures capability of the context awareness of our feature representations. Furthermore, our multi-scale and multi-level dense reconstruction module groups extracted feature information according to pre- and post-temporal sequences. By using multi-level dense reconstruction, the following groups are able to directly learn feature information from the previous groups, enhancing the network’s robustness to pseudo changes. The proposed method outperforms eight state-of-the-art methods on four common BCD datasets, including LEVIR-CD, SYSU-CD, WHU-CD, and S2Looking-CD, both in terms of visual comparison and objective evaluation metrics.

Funder

National Natural Science Foundation of China

Scientific Research Foundation for Doctoral Program of Hubei University of Technology

Science and Technology Research Project of Education Department of Hubei Province

Natural Science Foundation of Hubei Province

University Student Innovation and Entrepreneurship Training Program Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3