A Simple Way to Reduce 3D Model Deformation in Smartphone Photogrammetry

Author:

Jasińska AleksandraORCID,Pyka Krystian,Pastucha ElżbietaORCID,Midtiby Henrik SkovORCID

Abstract

Recently, the term smartphone photogrammetry gained popularity. This suggests that photogrammetry may become a simple measurement tool by virtually every smartphone user. The research was undertaken to clarify whether it is appropriate to use the Structure from Motion—Multi Stereo View (SfM-MVS) procedure with self-calibration as it is done in Uncrewed Aerial Vehicle photogrammetry. First, the geometric stability of smartphone cameras was tested. Fourteen smartphones were calibrated on the checkerboard test field. The process was repeated multiple times. These observations were found: (1) most smartphone cameras have lower stability of the internal orientation parameters than a Digital Single-Lens Reflex (DSLR) camera, and (2) the principal distance and position of the principal point are constantly changing. Then, based on images from two selected smartphones, 3D models of a small sculpture were developed. The SfM-MVS method was used, with self-calibration and pre-calibration variants. By comparing the resultant models with the reference DSLR-created model it was shown that introducing calibration obtained in the test field instead of self-calibration improves the geometry of 3D models. In particular, deformations of local concavities and convexities decreased. In conclusion, there is real potential in smartphone photogrammetry, but it also has its limits.

Funder

AGH University of Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference105 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Craniofacial 3D Morphometric Analysis with Smartphone-Based Photogrammetry;Sensors;2023-12-30

2. Photogrammetry in a Virtual Environment;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2023-12-15

3. Real-scene 3D measurement algorithm and program implementation based on Mobile terminals;Multimedia Tools and Applications;2023-05-12

4. Crowdsensing Close-Range Photogrammetry for Accurately Reconstructing a Digital Twin of a Cultural Heritage Building Using a Smartphone and a Compact Camera;Computational Science and Its Applications – ICCSA 2023 Workshops;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3