A Near InfraRed Emissive Chemosensor for Zn2+ and Phosphate Derivatives Based on a Di-(2-picolyl)amine-styrylflavylium Push-Pull Fluorophore

Author:

Gomes Liliana J.ORCID,Carrilho João P.ORCID,Pereira Pedro M.ORCID,Moro Artur J.ORCID

Abstract

A new Near InfraRed (NIR) fluorescent chemosensor for metal ions and anions is herein presented. The fluorophore is based on a styrylflavylium dye, a synthetic analogue of the natural anthocyanin family, with a di-(2-picolyl)amine (DPA) moiety as the metal chelating unit. The substitution pattern of the styrylflavylium core (with tertiary amines on positions 7 and 4′) shifts the optical properties of the dye towards the NIR region of the electronic spectra, due to a strong push-pull character over the π-conjugated system. The NIR chemosensor is highly sensitive to the presence of Zn2+, which induces a strong CHelation Enhanced Fluorescence (CHEF) effect upon binding to the DPA unit (2.7 fold increase). The strongest competing ion is Cu2+, with a complete fluorescence quenching, while other metals induce lower responses on the optical properties of the chemosensor. Subsequent anion screening of the Zn2+-chemosensor coordination compound has demonstrated a distinct selectivity towards adenosine 5′-triphosphate (ATP) and adenosine 5′-diphosphate (ADP), with high association constants (K ~ 106 M−1) and a strong CHEF effect (2.4 and 2.9 fold fluorescence increase for ATP and ADP, respectively). Intracellular studies with the Zn2+-complexed sensor showed strong luminescence in the cellular membrane of Gram– bacteria (E. coli) and mitochondrial membrane of mammalian cells (A659), which highlights its possible application for intracellular labelling.

Funder

Fundação para a Ciência e Tecnologia

EU Horizon 2020

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3