Feature Refine Network for Salient Object Detection

Author:

Yang Jiejun,Wang LiejunORCID,Li Yongming

Abstract

Different feature learning strategies have enhanced performance in recent deep neural network-based salient object detection. Multi-scale strategy and residual learning strategies are two types of multi-scale learning strategies. However, there are still some problems, such as the inability to effectively utilize multi-scale feature information and the lack of fine object boundaries. We propose a feature refined network (FRNet) to overcome the problems mentioned, which includes a novel feature learning strategy that combines the multi-scale and residual learning strategies to generate the final saliency prediction. We introduce the spatial and channel ‘squeeze and excitation’ blocks (scSE) at the side outputs of the backbone. It allows the network to concentrate more on saliency regions at various scales. Then, we propose the adaptive feature fusion module (AFFM), which efficiently fuses multi-scale feature information in order to predict superior saliency maps. Finally, to supervise network learning of more information on object boundaries, we propose a hybrid loss that contains four fundamental losses and combines properties of diverse losses. Comprehensive experiments demonstrate the effectiveness of the FRNet on five datasets, with competitive results when compared to other relevant approaches.

Funder

National Science Foundation of China

Tianshan Innovation Team of Xinjiang Uygur Autonomous Region

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference54 articles.

1. Saliency-Guided Unsupervised Feature Learning for Scene Classification

2. Saliency-Aware Video Object Segmentation

3. Discovering important people and objects for egocentric video summarization;Lee;Proceedings of the 2012 IEEE/CVF Conference on Computer Vision and Pattern Recognition,2012

4. Web-image driven best views of 3D shapes

5. Visual Saliency Based on Scale-Space Analysis in the Frequency Domain

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3