Adversarial Autoencoder and Multi-Armed Bandit for Dynamic Difficulty Adjustment in Immersive Virtual Reality for Rehabilitation: Application to Hand Movement

Author:

Kamikokuryo Kenta,Haga Takumi,Venture GentianeORCID,Hernandez VincentORCID

Abstract

Motor rehabilitation is used to improve motor control skills to improve the patient’s quality of life. Regular adjustments based on the effect of therapy are necessary, but this can be time-consuming for the clinician. This study proposes to use an efficient tool for high-dimensional data by considering a deep learning approach for dimensionality reduction of hand movement recorded using a wireless remote control embedded with the Oculus Rift S. This latent space is created as a visualization tool also for use in a reinforcement learning (RL) algorithm employed to provide a decision-making framework. The data collected consists of motions drawn with wireless remote control in an immersive VR environment for six different motions called “Cube”, “Cylinder”, “Heart”, “Infinity”, “Sphere”, and “Triangle”. From these collected data, different artificial databases were created to simulate variations of the data. A latent space representation is created using an adversarial autoencoder (AAE), taking into account unsupervised (UAAE) and semi-supervised (SSAAE) training. Then, each test point is represented by a distance metric and used as a reward for two classes of Multi-Armed Bandit (MAB) algorithms, namely Boltzmann and Sibling Kalman filters. The results showed that AAE models can represent high-dimensional data in a two-dimensional latent space and that MAB agents can efficiently and quickly learn the distance evolution in the latent space. The results show that Sibling Kalman filter exploration outperforms Boltzmann exploration with an average cumulative weighted probability error of 7.9 versus 19.9 using the UAAE latent space representation and 8.0 versus 20.0 using SSAAE. In conclusion, this approach provides an effective approach to visualize and track current motor control capabilities regarding a target in order to reflect the patient’s abilities in VR games in the context of DDA.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3