Multi-Enzyme Systems in Flow Chemistry

Author:

Fernandes PedroORCID,de Carvalho Carla C. C. R.ORCID

Abstract

Recent years have witnessed a growing interest in the use of biocatalysts in flow reactors. This merging combines the high selectivity and mild operation conditions typical of biocatalysis with enhanced mass transfer and resource efficiency associated to flow chemistry. Additionally, it provides a sound environment to emulate Nature by mimicking metabolic pathways in living cells and to produce goods through the systematic organization of enzymes towards efficient cascade reactions. Moreover, by enabling the combination of enzymes from different hosts, this approach paves the way for novel pathways. The present review aims to present recent developments within the scope of flow chemistry involving multi-enzymatic cascade reactions. The types of reactors used are briefly addressed. Immobilization methodologies and strategies for the application of the immobilized biocatalysts are presented and discussed. Key aspects related to the use of whole cells in flow chemistry are presented. The combination of chemocatalysis and biocatalysis is also addressed and relevant aspects are highlighted. Challenges faced in the transition from microscale to industrial scale are presented and discussed.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3