Physically Based Estimation of Rainfall Thresholds Triggering Shallow Landslides in Volcanic Slopes of Southern Italy

Author:

Fusco ,De Vita ,Mirus ,Baum ,Allocca ,Tufano ,Di Clemente ,Calcaterra

Abstract

On the 4th and 5th of March 2005, about 100 rainfall-induced landslides occurred along volcanic slopes of Camaldoli Hill in Naples, Italy. These started as soil slips in the upper substratum of incoherent and welded volcaniclastic deposits, then evolved downslope according to debris avalanche and debris flow mechanisms. This specific case of slope instability on complex volcaniclastic deposits remains poorly characterized and understood, although similar shallow landsliding phenomena have largely been studied in other peri-volcanic areas of the Campania region underlain by carbonate bedrock. Considering the landslide hazard in this urbanized area, this study focused on quantitatively advancing the understanding of the predisposing factors and hydrological conditions contributing to the initial landslide triggering. Borehole drilling, trial pits, dynamic penetrometer tests, topographic surveys, and infiltration tests were conducted on a slope sector of Camaldoli Hill to develop a geological framework model. Undisturbed soil samples were collected for laboratory testing to further characterize hydraulic and geotechnical properties of the soil units identified. In situ soil pressure head monitoring probes were also installed. A numerical model of two-dimensional variably saturated subsurface water flow was parameterized for the monitored hillslope using field and laboratory data. Based on the observed soil pressure head dynamics, the model was calibrated by adjusting the evapotranspiration parameters. This physically based hydrologic model was combined with an infinite-slope stability analysis to reconstruct the critical unsaturated/saturated conditions leading to slope failure. This coupled hydromechanical numerical model was then used to determine intensity–duration (I-D) thresholds for landslide initiation over a range of plausible rainfall intensities and topographic slope angles for the region. The proposed approach can be conceived as a practicable method for defining a warning criterion in urbanized areas threatened by rainfall-induced shallow landslides, given the unavailability of a consistent inventory of past landslide events that prevents a rigorous empirical analysis.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3