Mechanical Characterization and Finite Element Analysis of Hierarchical Sandwich Structures with PLA 3D-Printed Core and Composite Maize Starch Biodegradable Skins

Author:

Zoumaki Maria,Mansour Michel T.,Tsongas KonstantinosORCID,Tzetzis DimitriosORCID,Mansour Gabriel

Abstract

The objective of this research is the fabrication of biodegradable starch-based sandwich materials. The investigated sandwich structures consist of maize starch-based films as skins and biodegradable 3D-printed polylactic filaments (PLA) as the core. To investigate the tensile properties of the skins, conventional and nanocomposite films were prepared by a solution mixing procedure with maize starch and glycerol as the plasticizer, and they were reinforced with sodium montmorillonite clay, cellulose fibers and fiberglass fabric, with different combinations. Test results indicated a significant improvement in the mechanical and morphological properties of composite films prepared with sodium montmorillonite clay in addition with cellulose fibers and fiberglass fabric, with 20 wt% of glycerol. The morphology of the skins was also examined by scanning electron microscopy (SEM). Three orders of hierarchical honeycombs were designed for the 3D-printed core. To investigate how the skin material and the design of the core affect the mechanical properties of the starch-based sandwich, specimens were tested under a three-point bending regime. The test results have shown that the flexural strength of the biodegradable sandwich structure increased with the use of a second order hierarchy core and starch-based skins improved the strength and stiffness of the neat PLA-based honeycomb core. The bending behavior of the hierarchical honeycombs was also assessed with finite element analysis (FEA) in combination with experimental findings. Flexural properties demonstrated that the use of starch-based films and a PLA honeycomb core is a suitable solution for biodegradable sandwich structures.

Funder

State Scholarships Foundation

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3